Received 4 September 2006

Accepted 5 September 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

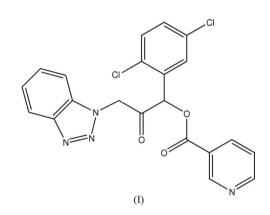
Jun Wan, Zheng-Zhong Peng, Sai Bi, Yue-Qin Yu and Shu-Sheng Zhang*

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.070 wR factor = 0.171 Data-to-parameter ratio = 14.4

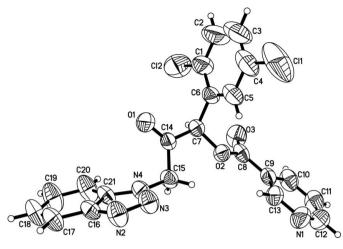

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-(3*H*-Benzotriazol-1-yl)-1-(2,5-dichlorophenyl)-2-oxopropyl nicotinate

Molecules of the title compound, $C_{21}H_{14}Cl_2N_4O_3$, are linked into chains along the *b* axis by intermolecular $C-H\cdots O$ hydrogen bonds. $C-H\cdots N$ interactions connect these chains into a two-dimensional layer. The packing is further stabilized by $\pi-\pi$ interactions involving the triazole rings.

Comment

We have recently reported the structure of 2-(1H-1,2,3-benzotriazol-1-ylmethyl)-1-benzoylethyl 4-chlorobenzoate, (II) (Wan*et al.*, 2006). As part of our ongoing studies of triazole derivatives, the title compound, (I), was synthesized and its structure is reported here.


All bond lengths and angles are within normal ranges (Allen *et al.*, 1987) and are comparable with those in the related compound, (II). The benzotriazole system is essentially planar, with a dihedral angle of $0.8 (2)^{\circ}$ between the triazole (N2–N4/C16/C21) and benzene (C16–C21) rings. The mean plane of the benzotriazole group makes dihedral angles of 44.38 (1) and 66.90 (2)° with the pyridine (N1/C10–C14) and (C1–C6) benzene rings, respectively. The dihedral angle between the planes of the latter two aromatic rings is $81.0 (2)^{\circ}$.

In the crystal structure, molecules are linked into chains along the *b* axis by intermolecular C-H···O hydrogen bonds. C-H···N interactions connect the chains into a two-dimensional layer (Table 1 and Fig. 2). The packing is further stabilized by π - π interactions involving the triazole rings: Cg1··· $Cg1^{i} = 3.494$ Å [symmetry code: (i) 3 - x, 1 - y, 1 - z; Cg1 is the centroid of the triazole ring].

Experimental

The title compound was prepared according to the literature method of Wan *et al.* (2006). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of one week.

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of the compound (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

V = 1015.2 (4) Å³

 $D_x = 1.444 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.35 \text{ mm}^{-1}$ T = 293 (2) K

Column, colourless

 $R_{\rm int} = 0.025$

 $\theta_{\rm max} = 26.1^\circ$

 $0.36 \times 0.12 \times 0.11 \ \text{mm}$

5721 measured reflections

3902 independent reflections

1932 reflections with $I > 2\sigma(I)$

Z = 2

Crystal data

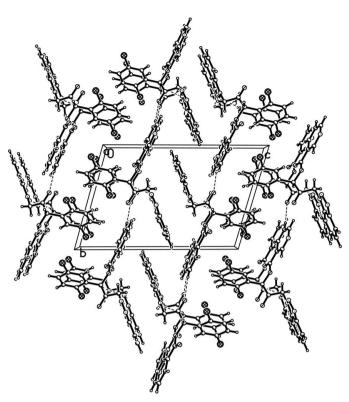
Data collection

Siemens SMART 1000 CCD areadetector diffractometer ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.884, T_{max} = 0.962$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0582P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.070$	+ 0.3295P]
$wR(F^2) = 0.171$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
3902 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
271 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	


Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\text{C7}-\text{H7}A\cdots\text{N3}^{i}}$	0.98	2.59	3.327 (5)	132
$C11 - H11A \cdot \cdot \cdot O1^{ii}$	0.93	2.51	3.427 (6)	169
$C20-H20A\cdots N2^{i}$	0.93	2.46	3.346 (6)	160

Symmetry codes: (i) x - 1, y, z; (ii) x - 1, y - 1, z.

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C-H = 0.93-0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 2

Packing diagram of (I), viewed down the a axis, showing the intermolecular hydrogen bonds (dashed lines).

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (No. 05–2-JC-80) and the Outstanding Young-Adult Scientific Research Encouraging Foundation of Shandong Province (No. 2005BS04007).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wan, J., Peng, Z.-Z., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o634– 0636.